Geografia para Todos !!!!

GRAVIDADE

Fontes: Wikipédia, a enciclopédia livre.

 

 

gravidade é uma das quatro forças fundamentais da natureza (junto com a força forteeletromagnetismoforça fraca) em que objetos com massa exercem atração uns sobre os outros. Classicamente, é descrita pela lei de Newton da gravitação universal. Foi entendida primeiramente de modo matemático pelo físico inglês Isaac Newton e desenvolvida e estudada ao longo dos anos.


Do ponto de vista prático, a atração gravitacional da Terra confere peso aos objetos e faz com que caiam ao chão quando são soltos no ar (como a atração é mútua, a Terra também se move em direção aos objetos, mas apenas por uma ínfima fração). Ademais, a gravitação é o motivo pelo qual a Terra, o Sol e outros corpos celestiais existem: sem ela, a matéria não se teria aglutinado para formar aqueles corpos e a vida como a entendemos não teria surgido. A gravidade também é responsável por manter a Terra e os outros planetas em suas respectivas órbitas em torno do Sol e a Lua em órbita em volta da Terra, bem como pela formação das marés e por muitos outros fenômenos naturais.

 

 

 

 

 

 

 

Gravitação

Gravitação é a força de atração que existe entre todas as partículas com massa no universo.

A gravitação é responsável por prender objectos à superfície de planetas e, de acordo com as leis do movimento de Newton, é responsável por manter objectos em órbitaem torno uns dos outros.

A gravidade faz muito mais do que simplesmente segurar-nos às nossas cadeiras. Foi Isaac Newton quem a reconheceu. Newton escreveu numa das suas memórias que na altura em que estava a tentar compreender o que mantinha a Lua no céu viu uma maçã cair no seu pomar, e compreendeu que a Lua não estava suspensa no céu mas sim que caía continuamente, como se fosse uma bola de canhão que fosse disparada com tanta velocidade que nunca atinge o chão por este também "cair" devido à curvatura da Terra.

Segundo a terceira lei de Newton, quaisquer dois objectos exercem uma atracção gravitacional um sobre o outro de igual valor e sentido oposto.

 

Lei de Newton de Gravitação Universal

Por que uma maçã cai da macieira para o chão, em vez de flutuar? A suposta situação deIsaac Newton gerou toda uma área especial para os estudos da gravidade.

Pouco se sabia sobre gravitação até o século XVII, pois acreditava-se que leis diferentes governavam os céus e a Terra. A força que mantinha a Lua pendurada no céu nada tinha a ver com a força que nos mantém presos à Terra. Isaac Newton foi o primeiro a pensar na hipótese das duas forças possuírem as mesmas naturezas; até então, havia apenas a teoria magnetista de Johannes Kepler, que dizia que era o magnetismo que fazia os planetas orbitarem o Sol

Newton explica, "Todos os objectos no Universo atraem todos os outros objectos com uma força direccionada ao longo da linha que passa pelos centros dos dois objectos, e que é proporcional ao produto das suas massas e inversamente proporcional ao quadrado da separação entre os dois objectos."

Newton acabou por publicar a sua, ainda hoje famosa, lei da gravitação universal, no seu Principia Mathematica, como:

F = \frac{G m_1 m_2}{r^2}

onde:

A força de atração entre dois objetos é chamada de peso.

Rigorosamente falando, esta lei aplica-se apenas a objectos semelhantes a pontos. Se os objectos possuírem extensão espacial, a verdadeira força terá de ser encontrada pela integração das forças entre os vários pontos. Por outro lado, pode provar-se que para um objecto com uma distribuição de massa esfericamente simétrica, a integral resulta na mesma atracção gravitacional que teria se fosse uma massa pontual.

Foi este obstáculo que levou Newton a adiar por vários anos a publicação da sua teoria, já que ele não conseguia mostrar que a gravitação exercida pela Terra sobre um corpo à sua superfície era a mesma como se toda a massa da Terra estivesse concentrada em seu centro.

 

Forma Vetorial

A forma acima descrita é uma versão simplificada. Ela é expressa mais propriamente pela forma que segue, a qual é vetorialmente completa. (Todas as grandezas emnegrito representam grandezas vetoriais)

\mathbf{F_{1\,2}} = {G m_1m_2(\mathbf{r_2}-\mathbf{r_1}) \over \left| \mathbf{r_2}-\mathbf{r_1} \right|^3}

onde:

  • \mathbf{F_{1\,2}}
     é a força exercida em m_1 por m_2
  • m_1 e m_2 são as massas
  • \mathbf{r_1}
     e 
    \mathbf{r_2}
     são os vectores posição das duas massas respectivas
  • G é a constante gravitacional

Para a força na massa dois, simplesmente tome o oposto do vetor

\mathbf{F_{1\,2}}

A principal diferença entre as duas formulações é que a segunda forma usa a diferença na posição para construir um vetor que aponta de uma massa para a outra, e de seguida divide o vetor pelo seu módulo para evitar que mude a magnitude da força.

 

 

Aceleração da gravidade

Para saber a aceleração da gravidade de um astro ou corpo, a fórmula matemática é parecida:

A = \frac{G m}{r^2}

onde:

 

 

Comparação com a força eletromagnética

A atração gravitacional dos prótons é aproximadamente um fator 10 36 mais fraco que a repulsão electromagnética. Este fator é independente de distância, porque ambas as forças são inversamente proporcionais ao quadrado da distância. Isso significa que, numa balança atômica, a gravidade mútua é desprezável. Porém, a força principal entre os objetos comuns e a Terra e entre corpos celestiais é a gravidade, quando pelo menos um deles é eletricamente neutro, ou quase. Contudo se em ambos os corpos houvesse um excesso ou déficit de único elétron para cada 10 18 prótons isto já seria suficiente para cancelar a gravidade (ou no caso de um excesso num e um déficit no outro: duplicar a atração).


A relativa fraqueza da gravidade pode ser demonstrada com um pequeno ímã, que vai atraindo para cima pedaços de ferro pousados no chão. O minúsculo ímã consegue anular a força gravitacional da Terra inteira.

A gravidade é pequena, a menos que um dos dois corpos seja grande, mas a pequena força gravitacional exercida por corpos de tamanho ordinário pode ser demonstrada com razoável facilidade por experiências como a da barra de torção de Cavendish.

 

 

Sistema Auto-Gravitacional

Um sistema auto-gravitacional é um sistema de massas mantidas juntas pela sua gravidade mútua. Um exemplo de tal é uma estrela.

 

 

História

Ninguém tem certeza se o conto sobre Newton e a maçã é verídico, mas o raciocínio, com certeza, tem seu valor. Ninguém antes dele ousou contrariar Aristóteles e dizer que a mesma força que atrai uma maçã para o chão mantém a Lua, a Terra, e todos os planetas em suas órbitas.

Newton não foi o único a fazer contribuições significativas para o entendimento da gravidade. Antes dele, Galileu Galilei corrigiu uma noção comum, partida do mesmoAristóteles, de que objetos de massas diferentes caem com velocidades diferentes. Para Aristóteles, simplesmente fazia sentido que objetos de massas diferentes demorassem tempos diferentes a cair da mesma altura e isso era o bastante para ele. Galileu, no entanto, tentou de fato lançar objetos de massas diferentes ao mesmo tempo e da mesma altura. Desprezando as diferenças devido ao arraste do ar, Galileu observou que todas as massas aceleravam igualmente. Podemos deduzir isso usando a Segunda Lei de Newton, F = m a. Se considerarmos dois corpos com massas m_1 e m_2 muito menores do que massa da terra M_T, obtemos as equações:

 m_1a_1 = F_1 = -{G m_1M_T \over r^2}
 m_2a_2 = F_2 = -{G m_2M_T \over r^2}

Dividindo a primeira equação por m_1 e a segunda por m_2 obtemos:

 a_1 = -{G M_T \over r^2}
 a_2 = -{G M_T \over r^2}

ou seja,  a_1 = a_2 .

 

 

 teoria geral da gravidade de Einstein

Representação da curvatura do espaço-tempo em torno de uma massa formando um campo gravitacional

A formulação da gravidade por Newton é bastante precisa para a maioria dos propósitos práticos. Existem, no entanto, alguns problemas:

  1. Assume que alterações na força gravitacional são transmitidas instantaneamente quando a posição dos corpos gravitantes muda. Porém, isto contradiz o fato que existe uma velocidade limite a que podem ser transmitidos os sinais (velocidade da luz no vácuo).
  2. O pressuposto de espaço e tempo absolutos contradiz a teoria de relatividade especial de Einstein.
  3. Prediz que a luz é desviada pela gravidade apenas metade do que é efectivamente observado.
  4. Não explica ondas gravitacionais ou buracos negros,
  5. De acordo com a gravidade newtoniana (com transmissão instantânea de força gravitacional), se o Universoé euclidiano, estático, de densidade uniforme em média positiva e infinito, a força gravitacional total num ponto é uma série divergente. Por outras palavras, a gravidade newtoniana é incompatível com um Universocom estas propriedades.

Para o primeiro destes problemas, Einstein desenvolveu uma nova teoria da gravidade chamada relatividade geral, publicada em 1915. Esta teoria prediz que a presença de matéria "distorce" o ambiente de espaço-tempo local, fazendo com que linhas aparentemente "rectas" no espaço e no tempo tenham características que são normalmente associadas a linha "curvas".

Embora a relatividade geral seja, enquanto teoria, mais precisa que a lei de Newton, requer também um formalismo matemático significativamente mais complexo. Em vez de descrever o efeito de gravitação como uma "força", Einstein introduziu o conceito de espaço-tempo curvo, onde os corpos se movem ao longo de trajetórias curvas.

teoria da relatividade de Einstein prediz que a velocidade da gravidade (definida como a velocidade a que mudanças na localização de uma massa são propagadas a outras massas) deve ser consistente com a velocidade da luz. Em 2002, a experiência de Fomalont-Kopeikin produziu medições da velocidade da gravidade que corresponderam a esta predição. No entanto, esta experiência ainda não sofreu um processo amplo de revisão pelos pares, e está a encontrar cepticismo por parte dos que afirmam que Fomalont-Kopeikin não fez mais do que medir a velocidade da luz de uma forma intrincada.